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Abstract. The planetary boundary layer (PBL) height (PBLH) is an important 21 

parameter for various meteorological and climate studies. This study presents a multi-22 

structure deep neural network (DNN) model, designed to estimate PBLH by integrating 23 

morning temperature profiles with surface meteorological observations. The DNN 24 

model is developed by leveraging a rich dataset of PBLH derived from long-standing 25 

radiosonde records and augmented with high-resolution micro-pulse lidar and Doppler 26 

lidar observations. We access the performance of the DNN with an ensemble of ten 27 

members, each featuring distinct hidden layer structures, which collectively yield a 28 

robust 27-year PBLH dataset over the Southern Great Plains from 1994 to 2020. The 29 

influence of various meteorological factors on PBLH is rigorously analyzed through 30 

the importance test. Moreover, the DNN model's accuracy is evaluated against 31 

radiosonde observations and juxtaposed with conventional remote sensing 32 

methodologies, including Doppler lidar, ceilometer, Raman lidar, and Micro-pulse 33 

lidar. The DNN model exhibits reliable performance across diverse conditions and 34 

demonstrates lower biases relative to remote sensing methods. In addition, the DNN 35 

model, originally trained over a plain region, demonstrates remarkable adaptability 36 

when applied to the heterogeneous terrains and climates encountered during the 37 

GoAmazon (Tropical Rainforest) and CACTI (Middle Latitude Mountain) campaigns. 38 

These findings demonstrate the effectiveness of deep learning models in estimating 39 

PBLH, enhancing our understanding of boundary layer dynamics with implications for 40 

enhancing the representation of PBL in weather forecasting and climate modeling. 41 

 42 
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1 Introduction 43 

The Planetary Boundary Layer (PBL) is the atmosphere's lowest part, where the 44 

Earth's surface directly influences meteorological variables, impacting the climate 45 

system (Garratt, 1994; Kaimal and Finnigan, 1994). The PBL height (PBLH) is a 46 

meteorological factor that strongly influences surface-atmosphere exchanges of heat, 47 

moisture, and energy (Stull, 1988; Caughey, 1984; Holtslag and Nieuwstadt, 1986; 48 

Mahrt, 1999; Helbig et al., 2021; Guo et al., 2024; Beamesderfer et al., 2022). In 49 

addition, PBLH it is a crucial variable for monitoring and simulating surface pollutant 50 

behaviors since it determines the volume available for near-surface pollutant dispersion 51 

(Li et al., 2017; Su et al., 2022a; Tucker et al., 2009). Due to its impacts on the 52 

development of convective systems, PBLH is also a key parameter in numerical 53 

weather forecasts and climate models (Menut et al., 1999; Park et al., 2001; 2023; 54 

Emanuel, 1994; Guo et al., 2017; Lilly, 1968; Matsui et al., 2004).  55 

Radiosonde (SONDE) remains the standard method for estimating PBLH, yet it is 56 

hampered by limitations in temporal frequency, restricting its ability to 57 

comprehensively capture the whole diurnal cycle of PBL development (Stull, 1988; 58 

Seidel et al. 2010; Guo et al. 2021; Liu and Liang, 2010). To overcome these challenges, 59 

there has been an increasing dependence on remote sensing techniques, especially lidar 60 

systems. These techniques capture atmospheric vertical information (e.g., aerosols, 61 

temperature, humidity, and wind) at high temporal and vertical resolutions, leading to 62 

remote sensing-based retrievals of PBLH (Menut et al., 1999; Kotthaus et al., 2023; 63 

Sawyer and Li, 2013). The remote sensing systems, including Doppler lidar (Barlow et 64 

https://doi.org/10.5194/egusphere-2024-376
Preprint. Discussion started: 13 February 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 4 

al. 2011), ceilometer (Zhang et al. 2022), Raman lidar (Summa et al. 2013), and Micro-65 

pulse lidar (Melfi et al., 1985), utilize laser-based technology to track PBLH diurnal 66 

evolutions, helping us understand the PBL dynamics (Cohn and Angevine, 2000; Davis 67 

et al., 2000).  68 

Despite advancements in remote sensing for PBLH estimation, challenges persist 69 

in aligning the results from various remote sensing instruments with those from 70 

SONDE measurements (Zhang et al. 2022; Su et al. 2020; Chu et al., 2019). 71 

Specifically, interpreting aerosol, turbulence, and moisture profiles derived from 72 

remote sensing techniques to determine PBLH bears inherent limitations due to the 73 

unstable signal-to-noise ratio (Su et al., 2017; Kotthaus et al., 2023; Krishnamurthy et 74 

al., 2021). This issue is compounded by the differing measurement methodologies 75 

employed by various remote sensing tools, leading to notable uncertainties when 76 

comparing their PBLH estimates to those obtained from standard SONDE retrievals 77 

(Zhang et al. 2022; Sawyer and Li, 2013). 78 

As machine learning (ML) has shown potential in atmospheric science (McGovern 79 

et al., 2017; Gagne et al., 2019; Vassallo et al., 2020; Cadeddu et al., 2009; Molero et 80 

al. 2022), this technique presents a promising tool for refining the estimation of PBLH 81 

to resolve the inherent complexity and variability of PBL. For example, several studies 82 

use ML to identify PBL heights using thermodynamic profiles or backscatter profiles 83 

from Lidar or Atmospheric Emitted Radiance Interferometer (AERI), highlighting the 84 

ML's superiority over conventional techniques under different scenarios (Sleeman et al. 85 

2020; Krishnamurthy et al., 2021; Rieutord et al. 2021; Liu et al. 2022; Ye et al. 2021). 86 
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Moreover, Li et al. (2023) used an ML algorithm that considers the vertical distribution 87 

of aerosols to find the PBLH under complex atmospheric conditions.  88 

While existing ML methodologies have marked progress in estimating PBLH, these 89 

studies mainly focus on refining retrievals from remote sensing data, particularly lidar-90 

based technologies. Thus, there is an inherent limitation to the applicability due to a 91 

reliance on specific remote sensing instruments. To address this issue, we aim to 92 

leverage and integrate the comprehensive field observations (i.e., radiosonde and 93 

remote sensing techniques) to develop a deep learning model for direct PBLH 94 

estimation from conventional meteorological data. This strategy circumvents the 95 

limitations of relying on particular remote sensing technologies. Furthermore, our 96 

model employs a multi-structure deep neural network (DNN), diverging from 97 

traditional ML methods like random forest, to enhance its adaptivity for PBLH 98 

estimations. This multi-structure DNN approach offers great potential for wide 99 

applications under various meteorological conditions, as well as a stable performance 100 

for both trained and untrained periods. This underscores the versatility of DNN as a tool 101 

for PBLH estimation, which can be utilized under different scenarios and locations. 102 

By focusing on the interaction between surface meteorology and the PBL, this study 103 

introduces a DNN-based method to estimate the daytime evolution of PBLH from 104 

morning temperature profiles and surface meteorology. We evaluate the model's 105 

performance using extensive datasets over the Southern Great Plains (SGP) for a period 106 

spanning 27 years (1994-2020) and includes comparisons with PBLH estimations 107 

obtained from Doppler lidar, ceilometer, Raman lidar, and micro-pulse lidar. 108 
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Furthermore, we explore the generalizability of the model to different geographic 109 

regions and climates, as tested during the field campaigns, e.g., Green Ocean Amazon 110 

(GoAmazon) and Cloud, Aerosol, and Complex Terrain Interactions (CACTI).  111 

 112 

2 Data and instruments 113 

2.1 ARM Sites 114 

The Atmospheric Radiation Measurement (ARM) program, funded by the U.S. 115 

Department of Energy, has been employed at the Southern Great Plains (SGP) site in 116 

Oklahoma (36.607°N, 97.488°W) for several decades. This study use comprehensive 117 

field observations at the SGP site during 1994 to 2020. In addition to the SGP site, this 118 

study utilizes data from the ARM GoAmazon (3.213°S, 60.598°W) and ARM CACTI 119 

(32.126°S, 64.728°W) field campaigns to carry out indenpendant tests for the deep 120 

learning model. Specificly, the GoAmazon campaign is located in the amazon tropical 121 

forests and provides rich field observations data during 2014-2015. Meanwhile, the 122 

CACTI central site, at an elevation of 1141 meters within the Sierras de Córdoba 123 

Mountain range in north-central Argentina, offers the observations during the 2018-124 

2019 period. Utilizing these comprehensive ARM datasets, our study includes 125 

thermodynamic profiles derived from radiosondes, data from the Active Remote 126 

Sensing of Clouds ( Clothiaux et al. 2000, 2001; Kollias et al. 2020), in-situ surface 127 

flux measurements, and standard meteorological observations at the surface, as 128 

documented by Cook (2018) and Xie et al. (2010). 129 
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SONDE measurements at the ARM sites launch routinely several times a day and 130 

provide detailed information into the thermodynamic conditions of the atmosphere. The 131 

technical details of the ARM SONDE data are documented in Holdridge et al. (2011). 132 

Moreover, we use the surface meteorological parameters at the standard meteorological 133 

station. In-situ measurements at 2 meters above ground level provide data on 134 

temperature, relative humidity, and vapor pressure. Moreover, this study obtain the 135 

surface sensible and latent heat fluxes the surface instruments (Wesely et al., 1995). In 136 

SGP, we use the best-estimate surface fluxes in the Bulk Aerodynamic Energy Balance 137 

Bowen Ratio (BAEBBR) product, which is derived from the measurements by Energy 138 

Balance Bowen Ratio (EBBR). Due to the availability, we utilize the surface fluxes 139 

from Quality Controlled Eddy CORrelation (QCECOR) datasets from CACTI and 140 

GoAmazon sites (Tang et al. 2019).  141 

 142 

2.2 Existing PBLH datasets over the ARM sites 143 

For analyzing PBLH, we have utilized a variety of datasets to get a full picture of 144 

PBLH derived from different instruments. These datasets are developed by using 145 

different methodologies and instruments and jointly offer a detailed information of 146 

PBLH under various meteorological conditions. Among these datasets, SONDE- and 147 

ceilometer-derived PBLH are available for all three sites, other datasets are only 148 

available over the SGP. The technique details for these datasets can be found in the 149 

corresponding publications or technique reports.  150 

(1) SONDE-derived PBLH by Liu and Liang (2010): 151 
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PBLHs are retrieved using a method developed by Liu and Liang (2010), based on 152 

potential temperature gradients from SONDE. We focus on daytime data during 05:00–153 

18:00 Local Time (LT), with a resampled vertical resolution of 5-hPa. The SONDE 154 

dataset is available at DOI: https://doi.org/10.5439/1595321. 155 

(2) Doppler Lidar-derived PBLH by Sivaraman and Zhang (2021): 156 

Doppler lidar PBLH estimates are derived using a vertical velocity variance method 157 

during 2010-2019 (Tucker et al., 2009; Lareau et al., 2018; Sivaraman and Zhang 2021). 158 

The dataset is available at DOI: https://doi.org/10.5439/1726254. 159 

(3) Combined MPL and SONDE PBLH by Su et al. (2020): 160 

We utilize a PBLH dataset that merges lidar and SONDE measurements during 161 

1998-2023, ensuring vertical coherence and temporal continuity (Su et al. 2020). An 162 

additional method for handling cloudy conditions is detailed in Su et al. (2022b). The 163 

dataset is available at DOI: https://doi.org/10.5439/2007149. 164 

(4) Ceilometer-derived PBLH by Zhang et al. (2022): 165 

The Vaisala CL31 ceilometer, with a 7.7 km vertical range, provides detailed 166 

backscatter profiles used for PBLH estimation via gradient methods during 2011-2023 167 

(Zhang et al. 2022). Enhanced algorithms ensure robust estimations under all weather 168 

conditions. The dataset is available at DOI: https://doi.org/10.5439/1095593. 169 

(5) MPL-derived PBLH by Sawyer and Li (2013): 170 

Micropulse lidar (MPL) is utilized for its high temporal resolution to retrieve PBLH 171 

during 2009-2020. MPL-derived PBLH, validated against SONDE and infrared 172 

spectrometer (AERI) data, improves understanding of boundary-layer processes 173 
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(Sawyer and Li. 2013). The dataset is available at DOI: 174 

https://doi.org/10.5439/1637942. 175 

(6) Combined Raman Lidar and AERI PBLH by Ferrare (2012): 176 

PBLH is calculated using merged potential temperature profiles from Raman lidar 177 

and AERI, with criteria established for the SGP site. PBL heights are computed hourly 178 

for 2009-2011. The dataset is available at DOI: https://doi.org/10.5439/1169501. 179 

In the datasets, (1-3) serve as the foundation for training. Concurrently, considering 180 

radiosonde as the benchmark standard, we utilized dataset (1) for validating PBLH 181 

retrievals obtained from various sources. Meanwhile, datasets (4-6) are used for the 182 

intercomparisons between PBLH derived from DNN and remote sensing techniques. 183 

 184 

3 Deep Learning Model to Estimate PBLH 185 

3.1 The Multi-Structure Deep Learning Model 186 

Our deep learning model for estimating PBLH leverages the robustness of ensemble 187 

learning using a multi-structure DNN (Sze et al. 2017; Schmidhuber, 2015; Nielsen, 188 

2015; Pang et al. 2020). This model used the TensorFlow Package, developed by 189 

Google (Abadi et al., 2016; https://www.tensorflow.org/). By employing an array of 190 

varied network architectures, we capitalize on the unique strengths of each structure to 191 

synthesize a more accurate and reliable estimation of PBLH. Figure 1 outlines the 192 

DNN's comprehensive design, beginning with the input layer that ingests a suite of 193 

morning meteorological features. We first present a preliminary run for the model to 194 

obtain the importance of each input feature. Then, these inputs undergo a filtration 195 
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process based on their importance (Date and Kikuchi, 2018; Altmann et al. 2010), 196 

ensuring that only the impactful data guide the model (detailed in Section 3.3). 197 

Subsequently, the filtered inputs traverse through an ensemble of ten structures with 198 

distinct hidden layers. Each structure here represents an ensemble member and 199 

contributes to the prediction of PBLH in its unique way (Ganaie et al. 2022). The 200 

ensemble employs a three-layer base structure [52, 28, 16] for neural networks, from 201 

which ten unique configurations are derived by applying random perturbations to the 202 

default settings of the base structure. These different structures for ensembles 1-10 are 203 

presented in Table 1. 204 

At the final stage, the model use the PBLH esimations from different ensembles to 205 

get a mean value as the final PBLH retrieval. This process allows the model to leverage 206 

the different results of all structures and enhance the generalizability of results. In the 207 

DNN model, neuron biases in the output and hidden layers  are important for the 208 

network's architecture (Battaglia et al. 2018). These biases serve as fine-tuning 209 

parameters to adjust the activation thresholds of neurons in different layers and further 210 

refine the model's predictive capabilities. Neuron biases are initialized with small 211 

random values at the start of the training process and then iteratively adjusted according 212 

to the network weights during the training. Normalization is a preprocessing technique 213 

that often leads to improvements in model training by scaling the input features and 214 

target values to a standard range (Raju et al. 2020). The normalization process was 215 

applied to each input data to ensure that they have a zero mean and a standard deviation 216 
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of one, as well as the target data. This standardization scales the different input data to 217 

a similar range, and thus, contributes a more stable and efficient training process. 218 

The hidden layers of the DNN model incorporate L2 regularization to curtail 219 

overfitting, while batch normalization aids in stabilizing learning. Moreover, a dropout 220 

rate of 0.2 helps the model to generalize better by reducing reliance on any specific 221 

neurons during training. We choose the Adam optimizer and mean squared error as the 222 

loss function, which aligns with one of the best practices for regression models (Zhang. 223 

2018). The mean absolute error is selected as a metric to evaluate the model's accuracy 224 

during the training. We incorporate the early stopping and learning rate reduction 225 

callbacks in in the model's training for regularization and fine-tuning (Liu et al. 2019). 226 

Such measures ensure optimal performance by terminating training at the right juncture 227 

and avoid the overfitting in the final results. 228 

 229 

3.2 Training the DNN Model 230 

The training of the DNN model was conducted using a PBLH dataset enriched by 231 

SONDE and lidar measurements during 1994 to 2016 over the SGP. Table 2 presents 232 

the distribution of dataset samples under different local time, which were important for 233 

both the training and validation processes of the DNN model. The primary dataset (i.e., 234 

PBLH derived from SONDE measurements) is listed in the first column and are 235 

available routinely for 5, 11, and 17 LT. The training dataset was augmented with the 236 

combined MPL-SONDE PBLH dataset (Su et al. 2020) and the Doppler Lidar-derived 237 

PBLH (Sivaraman and Zhang, 2021) to address the gaps where SONDE measurements 238 
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were not available. In instances where radiosonde data are unavailable, the lidar datasets 239 

are used for training, contingent upon their agreement with radiosonde measurements 240 

within a margin of 0.2 km over a 3-hour window. 241 

 For the purpose of training the DNN model, 70% of the hourly data from both 242 

SONDE and the lidar combined dataset were randomly selected. The remaining 30% 243 

dataset, comprises the portion of SONDE measurements set aside for validation 244 

purposes, including a separate subset from the years 2017 to 2020 to test the model’s 245 

predictive capabilities on independent data. This training and validation scheme ensures 246 

that the DNN model is not only well-trained but also thoroughly evaluated, reinforcing 247 

its reliability in accurately estimating PBLH. As morning SONDE data constitute the 248 

primary input and boundary conditions for the model, the validation of PBLH retrievals 249 

is consequently confined to the 08:00 to 18:00 LT. 250 

 251 

3.3 Feature Importance Score 252 

In the DNN model, we quantified the significance of each input parameter using the 253 

permutation importance technique, which is a widely-used method for the deep learning 254 

(Date and Kikuchi, 2018; Altmann et al. 2010). Initially, we carry out a test run to 255 

determine a baseline performance by calculating the mean absolute error (MAE) on the 256 

validation set. Then, each feature within this set was then individually shuffled, severing 257 

its correlation with the target PBLH, and the MAE was recalculated. Compared to the 258 

baseline performance, the increase in MAE from this shuffled state indicates the 259 

feature's predictive value: the greater the increase, the more significant the feature. We 260 
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repeat this shuffling and evaluation for 15 times, each with a unique random seed to 261 

ensure statistical robustness. Furthermore, we calculated the average MAE increase 262 

across these iterations as the importance score. Therefore, we derived a composite 263 

importance metric for feature groups to represent their significance. 264 

Figure 2 presents the importance scores to demonstrate each primary feature's 265 

relative influence on the model's performance. Prominently, features such as the 266 

boundary layer height derived from parcel methods (𝐵𝐿𝐻!"#$%&), morning potential 267 

temperature profiles (θ), and surface relative humidity are identified as pivotal, with 268 

their substantial impact on the accuracy of PBLH estimation being highlighted.	269 

𝐵𝐿𝐻!"#$%& 	is defined as the height where the morning potential temperature first 270 

exceeds the current surface potential temperature by more than 1.5 K (Holzworth, 1964; 271 

Chu et al., 2019). Complementing this, Table 3 offers an exhaustive breakdown of 272 

importance scores for all considered input features within the deep learning model. In 273 

refining the model, features contributing a negligible or negative effect on performance 274 

(i.e., importance scores less than zero) are excluded. As a result, this selection criterion 275 

has led to the inclusion of 58 out of the original 64 features. This process ensures we 276 

only use inputs with a proven positive influence in the DNN model. 277 

 278 

4 Evaluation of Deep Learning Model  279 

4.1 Comparative analysis of biases among different datasets 280 

A critical component of evaluating our deep learning model's efficacy is analyzing 281 

the biases of individual ensemble members and their collective output. Figure 3 offers 282 
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a visual assessment of the mean absolute error (MAE), root mean square error (RMSE), 283 

and correlation coefficient (R) for each ensemble member, alongside a comparison with 284 

the ensemble mean (average of all individual ensemble members). The plotted data 285 

points reveal the variation in performance across different model architectures, while 286 

the ensemble mean, represented by the horizontal dashed lines, indicates the collective 287 

accuracy of the ensemble approach. The structures of different hidden layer 288 

configurations are listed in the Table 1. 289 

This methodological consolidation results in a more reliable and accurate PBLH 290 

estimation, leveraging the strengths and mitigating the weaknesses of individual 291 

models. By integrating multiple neural network configurations, we revealed that an 292 

ensemble prediction that consistently outperforms the individual models. This strategy 293 

can improve the MAE by up to 4.4%, rendering the model less dependent on any 294 

specific structural configuration. 295 

An in-depth comparative analysis of biases among various PBLH estimation 296 

methods is essential for validating the reliability and accuracy of the DNN developed 297 

in this study. Figure 4 illustrates the MAE trends for several methods over a multi-year 298 

span, with the SONDE-derived PBLH serving as the benchmark for ground truth. The 299 

analysis reveals the performance of different methodologies: the DNN approach, 300 

doppler lidar, ceilometer, MPL, and Raman lidar. Significantly, the DNN model, 301 

depicted in black, maintains a consistent MAE trend throughout the trained period 302 

(1994-2016) as well as the subsequent untrained period (2017-2020), demonstrating 303 

robust predictive stability. In contrast, the remote sensing-based methods show a 304 
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reduction in bias from 2010 to 2022, possibly due to the improvement of remote sensing 305 

data quality. The discrepancy in PBLH estimates between the DNN and SONDE 306 

remains consistently lower than those observed with conventional remote sensing 307 

techniques. 308 

Figure 5 provides a detailed evaluation of the DNN model in comparison to 309 

ceilometer and doppler lidar-derived PBLH, as these two methods have demonstrated 310 

the high quality with more than nine years of datasets. Figure 5a-b contrast the PBLH 311 

predictions from the DNN model for both the trained period (1994-2016) and untrained 312 

periods (2017-2020), respectively, showcasing strong correlations and low MAEs, 313 

indicative of the model's robust training and generalization capabilities. Figure 5c-d 314 

further this examination with ceilometer and Doppler lidar comparisons, respectively. 315 

Overall, Doppler lidar exhibits a closer alignment with SONDE-derived PBLH than the 316 

ceilometer. However, the MAE from Doppler lidar-based estimates is still 317 

approximately 48% higher than those derived from the DNN model. The correlation 318 

coefficient for the DNN-derived PBLH estimates has seen a substantial improvement, 319 

rising from the 0.5-0.6 range typically observed with remote sensing-based PBLH 320 

methods to exceed 0.8 when compared to SONDE-derived PBLH measurements. This 321 

comparative analysis not only confirms the DNN model’s accuracy but also offers 322 

insights into the relative performance of various contemporary PBLH estimation 323 

methodologies. 324 

 325 
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4.2 Performances of PBLH retrievals under different conditions 326 

The performance of PBLH retrievals under varying atmospheric conditions is a 327 

crucial aspect of model evaluation. In Figure 6, the seasonal diurnal cycles of PBLH 328 

estimated by different methods are presented, offering information into the diurnal and 329 

seasonal evolution of PBL. As PBLH demonstrates notable variations for different 330 

seasons and local time with large differences between summer and winter, the DNN 331 

and Doppler lidar estimates show good agreement and closely track the variations 332 

observed in SONDE data. Meanwhile, the ceilometer presents an underestimation of 333 

PBLH, especially for the summer afternoon, indicating the potential bias of ceilometer 334 

derived PBLH under a convective environment. 335 

Figure 7 illustrates the diurnal variation in the model's performance by comparing 336 

the correlation coefficient, RMSE, and MAE against SONDE-derived PBLH as the 337 

reference. The bar graphs for each local time hour offer a comparison of the RMSE and 338 

MAE, as well as the correlation, showcasing the model's precision and consistency 339 

relative to remote sensing methods (i.e., ceilometer and Doppler lidar). The ceilometer-340 

derived PBLH exhibits the greatest variations during different hours, particularly 341 

around noon, suggesting a time-dependent bias in its measurements. Conversely, both 342 

the DNN and Doppler lidar-derived PBLH demonstrate stable performance in term of 343 

MAE and RMSE throughout the day. Regarding the correlation, remote sensing 344 

methods like ceilometer and Doppler lidar exhibit a lower correlation with SONDE-345 

derived PBLH, especially in the early hours (8-9 LT) with a value of 0.1-0.3, indicating 346 

potential limitations in their reliability during these times. On the other hand, the DNN 347 
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model shows a relatively good correlation with SONDE retrievals (above 0.6 under 348 

different hours). This comparison shows the efficacy of DNN in tracking the diurnal 349 

cycle of PBLH. 350 

Continuing our assessment of the DNN model, we analyze the DNN model's 351 

monthly performance in estimating PBLH, as shown in Figure 8. The analysis compares 352 

MAE, RMSE, and correlation coefficients for each month to assess the model's 353 

precision and dependability. The summer months (June-July-August) exhibit higher 354 

biases, with MAE values for the DNN, ceilometer, and Doppler lidar at 0.3 km, 0.56 355 

km, and 0.45 km, respectively. In contrast, the winter months (December-January-356 

February) show reduced biases, with MAE values of 0.2 km for the DNN, 0.27 km for 357 

the ceilometer, and 0.24 km for the Doppler lidar. Specifically, the DNN model shows 358 

a much lower bias during the summer season. Compared to the remote sensing-based 359 

retrievals, the DNN-derived PBLH shows a much better agreement with SONDE-360 

derived PBLH, increasing from 0.3-0.6 to approximately 0.8 in term of correlation 361 

coefficients.  362 

Figure 9 presents the biases of PBLH retrievals under clear-sky and low cloud 363 

conditions. We calculated biases as the absolute deviation from the mean PBLH for 364 

each condition, focusing particularly on the differences between low cloud (maximum 365 

cloud fraction between 0-4 km exceeding 1%) and clear-sky (total cloud fraction below 366 

1%) scenarios. The violin plots in this figure illustrate the data distribution of biases for 367 

each method to demonstrate their variability. For the DNN model and ceilometer, the 368 

relative biases between clear and cloudy conditions are comparable and the difference 369 
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is less than than 1%. This suggests a consistent performance across these atmospheric 370 

states. However, the Doppler lidar exhibits a larger disparity, showing a 5.5% bias 371 

under cloudy conditions compared to clear skies. Moreover, the spread of biases 372 

(shaded areas and error bars) is notably wider for both the ceilometer and Doppler lidar. 373 

This indicates large variability in their performance. For all three methods, the mean 374 

biases are notably higher than the median values. Such differences indicate that the 375 

mean values are notably influenced by outliers under both clear-sky and cloudy 376 

conditions. 377 

The analyses presented in this section illustrate the effectiveness of the DNN model 378 

in capturing the PBLH variations  across different local times, seasons, and atmospheric 379 

conditions. Compared to the traditional remote sensing methods, the DNN model 380 

exhibits relatively good accuracy in aligning with SONDE-derived PBLH, indicating 381 

its capability and stable performance under different scenarios.  382 

 383 

4.3 Testing the DNN Model's Adaptability 384 

The DNN model relies on the incorporation of morning temperature profiles as 385 

inputs, such as detailed in Table 3. This dependency prompts the question of how to 386 

proceed the DNN model in the absence of SONDE data at specific locations. As a 387 

solution, we suggest employing morning temperature profiles from the European 388 

Centre for Medium-Range Weather Forecasts' fifth-generation global reanalysis (ERA-389 

5, Hersbach et al., 2020) dataset when radiosonde data is not available to maintain the 390 

model's operational integrity under sounding-data-constrained conditions. As one of the 391 
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most advanced reanalysis data, the ERA-5 is generated by the Integrated Forecasting 392 

System coupled with a data assimilation system, and offer the meteorological data at a 393 

spatial resolution of 0.25°- 0.25°. 394 

Figure 10 assess the performance of DNN produced by multi-sources field 395 

observations in estimating the PBLH by using morning temperature profiles from ERA-396 

5 (5 LT) and observed surface meteorological data. The temperature profiles in ERA-5 397 

have a vertical resolution of 25-hPa in the lower atmosphere and are interpolated into 398 

different levels described in Table 3. By utilizing ERA-5 morning profiles, the model 399 

demonstrates similar performance to those results achieved with radiosonde inputs, as 400 

evidenced by comparing Figure 10a and Figure 5. Moreover, this alternative approach 401 

also shows enhanced accuracy over the native PBLH model outputs from ERA-5, 402 

increasing the correlation coefficient from 0.74 to 0.86 and reducing the MAE from 0.3 403 

km to 0.25 km. In addition, it is important to acknowledge that the PBLH represented 404 

in ERA-5 is indicative of a grid-average value, approximately 25 km in scale, and 405 

therefore inherently differs from site-specific data.  406 

These findings highlight the alternative DNN model's robustness, offering a reliable 407 

substitute for radiosonde data by leveraging reanalysis data with similar performance. 408 

This demonstrates the DNN model's adaptability and potential as a practical tool for 409 

PBLH estimation across various meteorological sites, especially in regions or periods 410 

where radiosonde data may be lacking. 411 

We further test the adaptability and generalizability of the DNN model, by applying 412 

across different climatic and geographic regions. To this end, we extended our model 413 
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evaluation to include SONDE and surface meteorological data from the GoAmazon 414 

(Tropical Rainforest) and CACTI (Middle Latitude Mountain) field campaigns. 415 

Seasonality is accounted for as an input variable in the DNN model, with months in the 416 

Southern Hemisphere adjusted to reflect their Northern Hemisphere seasonal 417 

counterparts (e.g., July inputs are treated as January). The normalization process 418 

(Section 3.1) was reapplied for the CACTI campaign data to adjust for notable pressure 419 

level variations, ensuring input standardization with zero mean and unit variance.  420 

Figure 11 presents the model's performance, in comparison to SONDE observations 421 

for both GoAmazon and CACTI campaigns. The DNN model demonstrates 422 

commendable adaptability, maintaining a strong correlation (0.86-0.88) with SONDE 423 

measurements (Figure 11a-b). Further comparison is provided, which assess the 424 

performance of ceilometer derived PBLH against SONDE for the same campaigns. 425 

When assessing the performance of the ceilometer-derived PBLH against SONDE for 426 

the same campaigns, the DNN model exhibited both stronger correlations and smaller 427 

biases, as shown in Figure 11b-d. 428 

Nevertheless, the analysis highlighted the presence of systematic biases, with 429 

relatively larger MAE at the GoAmazon and CACTI sites compared to the SGP site. 430 

Figure 12 underscores this by presenting a comparative analysis of PBLH means and 431 

standard deviations across the three ARM sites. The early morning measurements 432 

during 05-07 LT are excluded. The results, derived from SONDE, the DNN model, 433 

ceilometer, and Doppler lidar data, reveal average differences in PBLH means relative 434 

to SONDE. These differences suggest an overestimation (+15%) and underestimation 435 
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(-23%) by the DNN model for the GoAmazon and CACTI sites, respectively, compared 436 

to the more consistent PBLH values at the SGP site. 437 

The evident systematic deviations when applying the SGP-trained DNN model to 438 

the diverse environments of GoAmazon and CACTI underscore the challenges in 439 

generalizing the model to regions with significantly different meteorological 440 

backgrounds. These findings point to the potential of DNN models for PBLH estimation 441 

while also highlighting the necessity for region-specific model adjustments. 442 

 443 

5 Summary 444 

This study has developed a Multi-Structure DNN model for estimating PBLH using 445 

conventional meteorological data. The DNN model is developed by leveraging a long-446 

term dataset of PBLH derived from radiosonde data and augmented with high-447 

resolution MPL and Doppler lidar observations. This model produced an PBLH dataset 448 

over the SGP with robust accuracy, consistently yielding lower bias values across 449 

various conditions and datasets. Utilizing conventional meteorological data, this 450 

method generates a 27-year dataset over the SGP, encompassing periods with limited 451 

remote sensing data availability. In situations where morning radiosonde data is 452 

unavailable, ERA-5 data can be effectively employed to initiate the model, offering a 453 

practical alternative. 454 

An important aspect of this research involved comparing DNN models with diverse 455 

remote sensing instruments. Although these instruments offer high temporal and 456 

vertical resolution, discrepancies in PBLH estimation remain. Our DNN model, 457 
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leveraging a broad range of input features refined by their importance, constructs a 458 

representation of PBL evolutions, frequently demonstrating a closer agreement with 459 

SONDE-derived PBLH. In the absence of remote sensing data, the DNN model can 460 

produce high-quality PBLH results from the conventional meteorology data. 461 

The study has shown the DNN model's ability to synthesize complex patterns from 462 

meteorological data, reflecting the versatility of machine learning in simulating the 463 

boundary layer processes. Its application to varied geographic terrains and climates 464 

during the GoAmazon and CACTI campaigns has further validated its adaptability, 465 

demonstrating a high correlation between DNN-derived PBLH and SONDE-derived 466 

PBLH. Nonetheless, systematic biases in regions outside the SGP highlight the 467 

influence of regional factors in PBLH estimation and suggest the need for region-468 

specific refinements to the model. 469 

In summary, this research introduces a machine learning framework for PBLH 470 

estimation that is able to generate high-quality PBLH using meteorological data, 471 

independent of remote sensing instruments. This methodology, alongside the datasets 472 

derived from the deep learning model, is beneficial in advancing our understanding of 473 

PBL daytime development including thermodynamics and dynamics. It also has 474 

implications for improved representation of the PBL processes in weather forecasting 475 

and climate models, particularly by offering the potential to diagnose PBL in models 476 

through the integration of modeled meteorological data as input. Future efforts will be 477 

directed towards refining this model to ensure its wide applicability over a global scale. 478 
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These developments aim to effectively tackle the challenges of systematic biases and 479 

regional variability in PBLH estimation. 480 

 481 

Data Availability. ARM radiosonde data, surface fluxes, and cloud masks are available 482 

at https://adc.arm.gov/discovery/#/results/instrument_class_code::armbe. The datasets 483 

of planetary boundary layer height used in this study can be downloaded from 484 

https://adc.arm.gov/discovery/#/results/instrument_class_code::pblht. The DNN-485 

derived PBLH datasets over the SGP, CACTI, and GoAmazon are available at Zenodo 486 

(https://zenodo.org/records/10633811) and will be uploaded to ARM data archive as a 487 

product with detailed information upon acceptance. 488 
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Table list: 745 

Table 1. This table lists the varying structures of hidden layers used by each ensemble 746 

member for PBLH estimation. Each configuration is expressed as an array, with the 747 

number of elements indicating the number of layers and each value specifying the 748 

number of neurons activated in the corresponding layer. For instance, a structure 749 

denoted as [52, 28, 16] comprises three hidden layers containing 52, 28, and 16 neurons, 750 

respectively. 751 

 752 

Ensemble 

Member 

Different Structures 

in Hidden Layer  

Ensemble 

Member 

Different Structures 

in Hidden Layer 

Member 1 [52, 28, 16] Member 6 [57, 44, 19] 

Member 2 [61, 43, 20] Member 7 [55, 43, 19] 

Member 3 [59, 45, 19] Member 8 [57, 43, 15] 

Member 4 [60, 45, 23] Member 9 [59, 41, 20, 10] 

Member 5 [57, 45, 23] Member 10 [57, 43, 18, 9] 

 753 

 754 

 755 

 756 

 757 

 758 

 759 

 760 

 761 

 762 

 763 

 764 

 765 
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Table 2. Distribution of Dataset Samples for deep learning neural network (DNN) 766 

Training and Validation. This table details the sample data in different local time used 767 

for the development and validation of DNN to estimate planetary boundary layer height 768 

(PBLH). The first column lists the available PBLH derived from radiosonde (SONDE, 769 

Liu and Liang. 2010) during various local hours from 1994 to 2016. The second column 770 

supplements the dataset with a combined MPL and SONDE approach (Su et al. 2020) 771 

and Doppler Lidar-derived PBLH (Sivaraman and Zhang, 2021) used in the absence of 772 

SONDE measurements. Seventy percent of the combined dataset from the first and 773 

second columns was randomly selected for the model's training. The third column 774 

provides the number of SONDE measurements available for validation purposes. Since 775 

morning SONDE serves as the input and boundary condition. 776 

Local Time 

(h) 
SONDE 

Supplement 

Lidar Dataset  

SONDE for 

Validation 

5 7163 0 0 

6 22 1181 0 

7 3 1186 0 

8 1225 2541 453 

9 16 2629 8 

10 9 2732 3 

11 6513 13 3307 

12 26 2797 9 

13 14 2694 47 

14 2131 2334 728 

15 28 2555 9 

16 3 2730 1 

17 6503 2 3348 
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Table 3. Feature Importance in the Deep Learning Model. This table presents the 777 

importance scores of each input feature used in the deep learning model to estimate the 778 

planetary boundary layer height. The features include local time, month, relative 779 

humidity, U and V wind components, surface pressure, precipitation, temperature, 780 

lifting condensation level (LCL), boundary layer height derived from sensible heat and 781 

parcel methods (Sensible Heat BLH and Parcel Method BLH), sensible and latent heat, 782 

and profiles of potential temperature (θ) at different heights. The importance scores 783 

quantify the relative contribution of each feature to the model's predictive accuracy. 784 

Feature Importance Feature Importance 
Local Time 0.001553446 θ 0.45km 0.002378 
Month 0.01447574 θ 0.5km 0.002168 
RH (i-1) 0.006151263 θ 0.55km 0.002156 
RH (i) 0.065531985 θ 0.6km 0.00223 
U Wind (i-1) 0.001555849 θ 0.65km 0.001738 
U Wind (i) 
V Wind (i-1) 

0.008374529 θ 0.7km 0.001382 
0.010233951 θ 0.75km 0.001251 

V Wind (i) 0.009699108 θ 0.8km 0.001533 
Surface Pressure (i-1) 0.000757657 θ 0.85km 0.001889 
Surface Pressure (i) 0.004098737 θ 0.9km 0.001667 
Rain Rate (i-1) 0.000313072 θ 0.95km 0.001062 
Rain Rate (i) 0.000442731 θ 1km 0.000533 
Temperature (i-1) 0.004147774 θ 1.1km 0.000657 
Temperature (i) 0.005575494 θ 1.2km 0.000172 
LCL (i-1) 0.001331462 θ 1.3km -8.3E-05 
LCL (i) 0.011779424 θ 1.4km -0.00047 
Sensible Heat BLH (i-1) 0.004322382 θ 1.5km -8.1E-05 
Sensible Heat BLH (i) 0.01068823 θ 1.6km 0.000436 
Parcel Method BLH (i-1) 0.035470469 θ 1.7km 0.000855 
Parcel Method BLH (i) 0.089339075 θ 1.8km 0.000374 
Sensible Heat (i-1) 0.00440638 θ 1.9km 0.000542 
Sensible Heat (i) 0.00138861 θ 2km 0.00044 
Latent Heat (i-1) 0.005000932 θ 2.2km -0.00044 
Latent Heat (i) 0.006878718 θ 2.4km -0.00088 
θ 0.05km 0.054674179 θ 2.6km -0.00072 
θ 0.1km 0.004824675 θ 2.8km 0.000325 
θ 0.15km 0.000101218 θ 3km 0.001006 
θ 0.2km 0.000781841 θ 3.2km 0.000577 
θ 0.25km 0.001795084 θ 3.4km 0.000799 
θ 0.3km 0.002307328 θ 3.6km 0.00064 
θ 0.35km 0.003030368 θ 3.8km 0.000747 
θ 0.4km 0.00309969 θ 4km 0.004221 
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Figures 785 

 786 

Figure 1. Schematic of the multi-structure deep neural networks (DNN) used for 787 

estimating the planetary boundary layer height (PBLH). Input features, including 788 

morning potential temperature profiles, temperature, wind, humidity, surface fluxes, 789 

seasonality, and time, are filtered based on importance and fed into the network. The 790 

system comprises ten distinct hidden layer structures, each processing the inputs to 791 

model PBLH. The outputs from these structures are then synthesized to determine the 792 

final PBLH value, leveraging the diverse representations of atmospheric dynamics 793 

captured by each neural network configuration. Neuron biases are applied at the output 794 

and hidden layers to fine-tune the model's performance. 795 
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 796 

Figure 2. Feature importance with permutation method in the deep learning model. 797 

This table presents the importance scores of each input feature used in the deep learning 798 

model to estimate the PBLH. The features include local time (LT), month, relative 799 

humidity (R), surface U and V wind components, pressure at the surface (PS), 800 

precipitation (PREC), surface temperature (T), sensible and latent heat (SH and LH), 801 

surface-derived lifting condensation level (LCL), boundary layer height derived from 802 

sensible heat and parcel methods (𝐵𝐿𝐻!"#$%&  and 𝐵𝐿𝐻'( ), and profiles of potential 803 

temperature (θ). The importance scores quantify the relative contribution of each 804 

feature to the model's predictive accuracy. 805 

 806 

 807 
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 808 

Figure 3: Performance metrics of individual ensemble members and the ensemble 809 

mean in estimating planetary boundary layer height (PBLH). Panel (a) displays the 810 

mean absolute error (MAE), panel (b) the root mean square error (RMSE), and panel 811 

(c) the correlation coefficient (R) for each of the ten ensemble members (represented 812 

by dots) and the ensemble mean (indicated by the horizontal dash line). The ensemble 813 

approach demonstrates improved accuracy and reliability in PBLH estimation as 814 

evidenced by the aggregation of individual model predictions into a robust ensemble 815 

mean. 816 

 817 

 818 

 819 

 820 

 821 

https://doi.org/10.5194/egusphere-2024-376
Preprint. Discussion started: 13 February 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 36 

 822 

Figure 4: Comparative analysis of the mean absolute error (MAE) in PBLH estimation 823 

using different methodologies. PBLH derived from SONDE is considered as the ground 824 

truth. The DNN approach is shown in black, doppler lidar (Sivaraman and Zhang. 2021) 825 

in yellow, ceilometer (Zhang et al. 2022) in pink, micro-pulse lidar (MPL, Sawyer and 826 

Li. 2013) in light red, and Raman lidar (Ferrare. 2012) in dark red. DNN model is 827 

trained during 1994-2016. Individual MAE values for DNN are represented by gray 828 

dots, while the solid lines denote the smoothed MAE for each method with a 2-year 829 

smooth window.  830 
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 831 

Figure 5: Scatter plots comparing observed radiosonde (SONDE) PBLH with estimates 832 

from the machine learning model and lidar observations. Panels (a) and (b) show the 833 

PBLH estimated by the deep neural network (DNN) during the trained period (1994-834 

2016) and the untrained period (2017-2020), respectively, with corresponding 835 

correlation coefficients (R) and mean absolute errors (MAE). Panels (c) and (d) display 836 

comparisons of Sonde PBLH with ceilometer (CEIL) and doppler lidar (DL) derived 837 

PBLH, respectively. The color gradient indicates the normalized density of data points, 838 

while the solid black line represents the line of best fit and error bars indicates the mean 839 

and standard deviations for each bin. 840 
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 841 

Figure 6: Seasonal-averaged daytime evolution of planetary boundary layer height 842 

(PBLH) derived from various methods. The panels represent the mean PBLH values 843 

throughout the day for different seasons: (a) March-April-May (MAM), (b) June-July-844 

August (JJA), (c) September-October-November (SON), and (d) December-January-845 

February (DJF). The PBLH values estimated by the deep neural network (DNN) are 846 

shown in red, ceilometer (CEIL) estimates in blue, Doppler lidar (DL) in green, and 847 

observed radiosonde (SONDE) data in black. Shaded areas around the lines indicate the 848 

standard deviations within each method.  849 
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 850 

Figure 7: Diurnal variations in the performance metrics for estimating PBLH using 851 

different datasets. (a) Shows the correlation coefficient (R), (b) represents the root mean 852 

square error (RMSE), and (c) depicts the mean absolute error (MAE) at various local 853 

times throughout the day. The deep learning neural network (DNN) estimates are in 854 

blue, ceilometer (CEIL) derived estimates are in pink, and doppler lidar (DL) estimates 855 

are in green. Note that these biases metrics are calculated using SONDE PBLH as the 856 

standard. The availability of SONDE data for different hours is detailed in Table 2.  857 
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 858 

Figure 8: Similar to Figure 7, but for MAE, RMSE, and R for different month. 859 
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 860 

Figure 9: Comparative analysis of PBLH estimation bias under clear-sky and low cloud 861 

conditions for various methods. Bias percentages are computed as the absolute bias 862 

normalized by the mean PBLH for each condition, with the number above each method 863 

indicating the difference in bias between low cloud and clear-sky scenarios. The 864 

boxplots detail the 10th, 25th, 50th, 75th, and 90th percentiles, while shaded areas in 865 

violin plots illustrate the distribution of dataset biases. The dots indicate the mean value 866 

for each condition. 867 

 868 

 869 
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 870 

Figure 10: Scatter plots comparing SONDE PBLH with estimates from the DNN and 871 

ERA-5. (a) The comparison between observed SONDE PBLH and estimates from the 872 

DNN model, which utilizes morning temperature profiles (5 LT) from ERA-5 (ERA 873 

Profile) and observed surface meteorological data (surface OBS) as inputs. (b) The 874 

correlation comparison observed SONDE PBLH and PBLH model outputs from the 875 

ERA-5 datasets. The color gradient in both panels represents the normalized density of 876 

data points, while the solid black line indicates the linear regression, and the error bars 877 

denote the mean and standard deviations for each bin. 878 
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 879 

Figure 11: Validation of the DNN trained over the SGP for the GoAmazon (Tropical 880 

Rainforest) and CACTI (Middle Latitude Mountain) field campaigns. Panels (a) and (c) 881 

illustrate the correlation (R) and mean absolute error (MAE) between DNN predictions 882 

and SONDE observations for GoAmazon and CACTI, respectively. Panels (b) and (d) 883 

show the performance of ceilometer (CEIL) derived PBLH compared to SONDE for 884 

the same campaigns. The color gradient indicates the normalized density of data points, 885 

while the solid black line represents the line of best fit and error bars indicates the mean 886 

and standard deviations for each bin.  887 
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 888 

Figure 12: Comparative PBLH mean (dots) and standard deviations (error bars) across 889 

ARM sites (SGP, GoAmazon, and CACTI). The datasets are derived from radiosonde 890 

(SONDE, in black), the DNN model (in pink), ceilometer (CEIL, in blue), and Doppler 891 

lidar (DL, in green), respectively. Noted the DL-derived PBLH is only available at the 892 

SGP. The percentages in various colors denote the differences in PBLH means derived 893 

from the DNN, CEIL, and DL methods relative to SONDE observations. To mitigate 894 

sampling bias, these mean values and standard deviations are computed exclusively for 895 

intervals where all instruments have concurrently available data. 896 
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